Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Histochem Cell Biol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597938

RESUMEN

The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.

2.
Int J Biol Macromol ; 266(Pt 2): 131338, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569987

RESUMEN

Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn2+ ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn2+ ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.0 ± 0.7 nm BSA-based nanoparticles (BSA-NPs) loaded with Mn2+ ions, which are manifested in aqueous solutions as negatively charged spheres with high colloid stability. The optimal loading of Mn2+ ions into BSA-NPs provides maximum values of longitudinal and transverse relaxivity at 98.9 and 133.6 mM-1 s-1, respectively, which are among the best known from the literature. The spin trap EPR method indicates that Mn2+ ions bound to BSA-NPs exhibit poor catalytic activity in the Fenton-like reaction. On the contrary, the presence of BSA-NPs has an antioxidant effect by preventing the accumulation of hydroxyl radicals produced by H2O2. The NPs exhibit remarkably low hemolytic activity and hemagglutination can be avoided at concentrations lower than 110 µM. Thus, BSA-NPs bound with Mn2+ ions are promising candidates for combining high contrast effect with biosafety and hemocompatibility.


Asunto(s)
Manganeso , Albúmina Sérica Bovina , Agua , Albúmina Sérica Bovina/química , Manganeso/química , Agua/química , Animales , Protones , Bovinos , Reactivos de Enlaces Cruzados/química , Nanopartículas/química , Hemólisis/efectos de los fármacos , Desnaturalización Proteica/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Humanos
3.
ChemMedChem ; : e202400045, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516805

RESUMEN

A general method for chemo- and diastereoselective modification of anticancer natural product arglabin with nitrogen- and carbon-centered pronucleophiles under the influence of nucleophilic phosphine catalysts was developed. The locked s-cis-geometry of α-methylene-γ-butyrolactone moiety of arglabin favors for the additional stabilization of the zwitterionic intermediate by electrostatic interaction between phosphonium and enolate oxygen centers, leading to the unprecedentedly high efficiency of the phosphine-catalyzed Michael additions to this sesquiterpene lactone. Using n-Bu3P as the catalyst, pyrazole, phthalimide, 2-oxazolidinone, 4-quinazolinone, uracil, thymine, cytosine, and adenine adducts of arglabin were obtained. The n-Bu3P-catalyzed reaction of arglabin with active methylene compounds resulted in the predominant formation of bisadducts bearing a new quaternary carbon center. All synthesized Michael adducts and previously obtained phosphorylated arglabin derivatives were evaluated in vitro against eleven cancer and two normal cell lines, and the results were compared to those of natural arglabin and its dimethylamino hydrochloride salt currently used as anticancer drugs. 2-Oxazolidinone, uracil, diethyl malonate, dibenzyl phosphonate, and diethyl cyanomethylphosphonate derivatives of arglabin exhibited more potent antiproliferative activity towards several cancer cell lines and lower cytotoxicity towards normal cell lines in comparison to the reference compounds, indicating the feasibility of the developed methodology for the design of novel anticancer drugs with better therapeutic potential.

4.
Chem Biodivers ; 21(3): e202302022, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38298091

RESUMEN

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program ('PRIORITY-2030'). HRMS data were obtained in the CSF-SAC FRC KSC RAS by support of the State Assignment of the Federal Research Center "Kazan Scientific Center", Russian Academy of Sciences. A.D.V, conducted studies of anticancer activity with financial support form the government assignment for FRC Kazan Scientific Center of RAS.


Asunto(s)
Propionatos , Humanos , Fenómenos Químicos
5.
Biochim Biophys Acta Gen Subj ; 1868(3): 130562, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218459

RESUMEN

The biomimetic nature of supramolecular systems, the structural similarity of synthetic surfactants to biomolecules (lipids, proteins), provide them with high membranotropy, the ability to overcome biological barriers, and affinity towards biosubstances. Despite rather high toxicity cationic surfactants are of importance as antimicrobial agents, gene nanocarriers and mitochondria targeted ligands. To minimize this limitation, cationic amphiphilic matrix undergoes modification with various functional groups. In this work, new piperidinium cationic surfactants containing one or two carbamate fragments were prepared; their aggregation behavior was systematically studied by tensiometery, spectrophotometry and fluorimetry. The presence of a carbamate fragment leads to a 2-3-fold decrease in critical micelle concentration and to a significant increase in solubilization capacity compared to unsubstituted analogue. Evaluation of the antimicrobial effect showed that all compounds exhibit high bactericidal and fungicidal activity against a wide range of pathogenic microorganisms, including their resistant forms. Importantly, the introducing carbamate moiety allows of decreasing hemolytic activity of cationic surfactants. The data obtained make it possible to recommend carbamate piperidinium surfactants as effective biocompatible and biodegradable nanocontainers for hydrophobic probes with high antimicrobial effect and moderate hemolytic activity.


Asunto(s)
Antiinfecciosos , Tensoactivos , Tensoactivos/farmacología , Tensoactivos/química , Carbamatos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Micelas
6.
Int J Biol Macromol ; 257(Pt 1): 128642, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061517

RESUMEN

In this work, we describe the synthesis, interactions with bovine serum albumin, and cytotoxicity of new ionic liquids based on 5-fluorouracil (API-ILs) with different cations (imidazolium, choline, isoquinolinium, guanidinium). The secondary and tertiary structure of BSA in solutions with different concentrations of API-ILs was monitored by the circular dichroism (CD) technique. The addition of API-ILs does not lead to structural changes in BSA. A quenching of fluorescence spectra intensity of BSA in presence of all API-ILs was observed, allowing the quantification of binding between API-ILs and BSA. The preferred localization of both ions in API-ILs differs significantly depending on the structure of the cation according to molecular docking. The aggregation of BSA in presence of API-ILs was analyzed by the dynamic light scattering (DLS) method, revealing a moderate increase in particle size. Cytotoxicity and selectivity of API-ILs on cancer and normal cell lines were estimated, showing a clear modification of the pharmaceutic activity of ionic liquid compared to 5-fluorouracil.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Simulación del Acoplamiento Molecular , Fluorouracilo/farmacología , Albúmina Sérica Bovina/química , Cationes
8.
Pharmaceutics ; 15(12)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38140072

RESUMEN

Antimicrobial resistance to modern antibiotics stimulates the search for new ways to synthesize and modify antimicrobial drugs. The development of synthetic approaches that can easily change different fragments of the molecule is a promising solution to this problem. In this work, a synthetic approach was developed to obtain multivalent thiacalix[4]arene derivatives containing different number of amine and hydroxyl groups. A series of macrocyclic compounds in cone, partial cone, and 1,3-alternate stereoisomeric forms containing -NHCH2CH2R (R = NH2, N(CH3)2, and OH) and -N(CH2CH2OH)2 terminal fragments, and their model non-macrocyclic analogues were obtained. The antibacterial activity against Gram-positive (Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains and cytotoxicity of the obtained compounds were studied. Structure-activity relationships were established: (1) the macrocyclic compounds had high antibacterial activity, while the monomeric compounds had low activity; (2) the compounds in cone and partial cone conformations had better antibacterial activity compared to the compounds in 1,3-alternate stereoisomeric form; (3) the macrocyclic compounds containing -NHCH2CH2N(CH3)2 terminal fragments had the highest antibacterial activity; (4) introduction of additional terminal hydroxyl groups led to a significant decrease in antibacterial activity; (5) the compounds in partial cone conformation had significant bactericidal activity against all studied cell strains; the best selectivity was observed for the compounds in cone conformation. The mechanism of antibacterial activity of lead compounds with terminal fragments -NHCH2CH2N(CH3)2 was proved using model negatively charged POPG vesicles, i.e., the addition of these compounds led to an increase in the size and zeta potential of the vesicles. The obtained results open up the possibility of using the synthesized macrocyclic compounds as promising antibacterial agents.

9.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37947686

RESUMEN

The creation of mitochondria-targeted vector systems is a new tool for the treatment of socially significant diseases. Phosphonium groups provide targeted delivery of drugs through biological barriers to organelles. For this purpose, a new class of alkyl(diethylAmino)(Phenyl) Phosphonium halides (APPs) containing one, two, or three diethylamino groups was obtained by the reaction of alkyl iodides (bromides) with (diethylamino)(phenyl)phosphines under mild conditions (20 °C) and high yields (93-98%). The structure of APP was established by NMR and XRD. A high in vitro cytotoxicity of APPs against M-HeLa, HuTu 80, PC3, DU-145, PANC-1, and MCF-7 lines was found. The selectivity index is in the range of 0.06-4.0 µM (SI 17-277) for the most active APPs. The effect of APPs on cancer cells is characterized by hyperproduction of ROS and depolarization of the mitochondrial membrane. APPs induce apoptosis, proceeding along the mitochondrial pathway. Incorporation of APPs into lipid systems (liposomes and solid lipid nanoparticles) improves cytotoxicity toward tumor cells and decrease toxicity against normal cell lines. The IC50s of lipid systems are lower than for the reference drug DOX, with a high SI (30-56) toward MCF-7 and DU-145. APPs exhibit high selective activity against Gram-positive bacteria S. aureus 209P and B. segeus 8035, including methicillin-resistant S. aureus (MRSA-1, MRSA-2), comparable to the activity of the fluoroquinolone antibiotic norfloxacin. A moderate in vivo toxicity in CD-1 mice was established for the lead APP.

10.
Inorg Chem ; 62(48): 19474-19487, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37983813

RESUMEN

Gold(I) complexes of LAu2Cl2 composition based on P2N2 ligands, namely 1,5-diaza-3,7-diphosphacyclooctanes, containing ethylpyridyl substituents at the phosphorus atoms and sp2- or sp3-hybridized endocyclic nitrogen atoms were synthesized. The SCXRD analysis indicated the strong impact of the geometry of the nitrogen atom on the structure and conformational flexibility of the complexes. The N-aryl substituted ligand with the planar endocyclic nitrogen atom provides higher flexibility of the complex and an ability to bind the solvent molecules in the "host-guest" mode, whereas that kind of behavior is forbidden for the complex with an N-alkyl substituted ligand with a pyramidal nitrogen atom. The substituents at nitrogen atoms also control the origin of the emission, which is phosphorescence for the N-aryl substituted complex and fluorescence for the N-alkylaryl substituted complex. The phosphorescent gold(I) complex displays high cytotoxicity without selectivity toward the m-HeLa and normal cells, but the core-shell nanoparticles formed on the base of the complex demonstrate reduced cytotoxicity. The luminescence of the NPs allows tracking the complexes in the cell samples.

11.
Molecules ; 28(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37894708

RESUMEN

This research is based on the concept that mitochondria are a promising target for anticancer therapy, including thatassociated with the use of oxidative phosphorylation blockers (mitochondrial poisons). Liposomes based on L-α-phosphatidylcholine (PC) and cholesterol (Chol) modified with cationic surfactants with triphenylphosphonium (TPPB-n, where n = 10, 12, 14, and 16) and imidazolium (IA-n(OH), where n = 10, 12, 14, and 16) head groups were obtained. The physicochemical characteristics of liposomes at different surfactant/lipid molar ratios were determined by dynamic/electrophoretic light scattering, transmission electron microscopy, and spectrophotometry. The hydrodynamic diameter of all the systems was within 120 nm with a polydispersity index of no more than 0.24 even after 2 months of storage. It was shown that cationization of liposomes leads to an increase in the internalization of nanocontainers in pancreatic carcinoma (PANC-1) and duodenal adenocarcinoma (HuTu 80) cells compared with unmodified liposomes. Also, using confocal microscopy, it was shown that liposomes modified with TPPB-14 and IA-14(OH) statistically better colocalize with the mitochondria of tumor cells compared with unmodified ones. At the next stage, the mitochondrial poison rotenone (ROT) was loaded into cationic liposomes. It was shown that the optimal loading concentration of ROT is 0.1 mg/mL. The Korsmeyer-Peppas and Higuchi kinetic models were used to describe the release mechanism of ROT from liposomes in vitro. A significant reduction in the IC50 value for the modified liposomes compared with free ROT was shown and, importantly, a higher degree of selectivity for the HuTu 80 cell line compared with the normal cells (SI value is 307 and 113 for PC/Chol/TPPB-14/ROT and PC/Chol/IA-14(OH)/ROT, respectively) occurred. It was shown that the treatment of HuTu 80 cells with ROT-loaded cationic liposomal formulations leads to a dose-dependent decrease in the mitochondrial membrane potential.


Asunto(s)
Liposomas , Rotenona , Rotenona/farmacología , Mitocondrias , Línea Celular , Fosfatidilcolinas , Tensoactivos
12.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894799

RESUMEN

A series of new fluorinated 1-benzylisatins was synthesized in high yields via a simple one-pot procedure in order to explore the possible effect of ortho-fluoro (3a), chloro (3b), or bis-fluoro (3d) substitution on the biological activity of this pharmacophore. Furthermore, the new isatins could be converted into water-soluble isatin-3-hydrazones using their acid-catalyzed reaction with Girard's reagent P and its dimethyl analog. The cytotoxic action of these substances is associated with the induction of apoptosis caused by mitochondrial membrane dissipation and stimulated reactive oxygen species production in tumor cells. In addition, compounds 3a and 3b exhibit platelet antiaggregation activity at the level of acetylsalicylic acid, and the whole series of fluorine-containing isatins does not adversely affect the hemostasis system as a whole. Among the new water-soluble pyridinium isatin-3-acylhydrazones, compounds 7c and 5c,e exhibit the highest antagonistic effect against phytopathogens of bacterial and fungal origin and can be considered useful leads for combating plant diseases.


Asunto(s)
Antineoplásicos , Isatina , Isatina/farmacología , Hidrazonas/farmacología , Agua/farmacología , Antineoplásicos/farmacología , Apoptosis , Relación Estructura-Actividad
13.
Polymers (Basel) ; 15(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37896340

RESUMEN

In the present study, the synthesis of oxygen-containing quaternary phosphonium salts (oxy-QPSs) was described. Within this work, structure-property relationships of oxy-QPSs were estimated by systematic analysis of physical-chemical properties. The influence of the oxygen-containing substituent was examined by comparing the properties of oxy-QPSs in homology series as well as with phosphonium analog-included alkyl side chains. The crystal structure analysis showed that the oxygen introduction influences the conformation of the side chain of the oxy-QPS. It was found that oxy-QPSs, using an aprotic co-solvent, dimethylsulfoxide (DMSO), can dissolve microcrystalline cellulose. The cellulose dissolution in oxy-QPSs appeared to be dependent on the functional group in the cation and anion nature. For the selected conditions, dissolution of up to 5 wt% of cellulose was observed. The antimicrobial activity of oxy-QPSs under study was expected to be low. The biocompatibility of oxy-QPSs with fermentative microbes was tested on non-pathogenic Saccharomyces cerevisiae, Lactobacillus plantarum, and Bacillus subtilis. This reliably allows one to safely address the combined biomass destruction and enzyme hydrolysis processes in one pot.

14.
Discov Nano ; 18(1): 133, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903946

RESUMEN

The work presents core-shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic P2N2-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of P2N2-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence. The cytotoxic effects of the NPs toward the normal and some of cancer cells are significantly lower than those of the corresponding molecular complexes, which correlates with the chemical stability of the NPs in the solutions. The ability of the NPs to self-enhanced and H2O2-induced ROS generation is demonstrated in solutions and intracellular space by means of the standard electron spin resonance (ESR) and fluorescence techniques correspondingly. The anticancer specificity of the NPs toward HuTu 80 cancer cells and the apoptotic cell death pathway correlate with the intracellular level of ROS, which agrees well with the self-enhancing ROS generation of the NPs. The enhanced level of ROS revealed in HuTu 80 cells incubated with the NPs can be associated with the significant level of their mitochondrial localization.

15.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628818

RESUMEN

The utility of sterically hindered phenols (SHPs) in drug design is based on their chameleonic ability to switch from an antioxidant that can protect healthy tissues to highly cytotoxic species that can target tumor cells. This work explores the biological activity of a family of 45 new hybrid molecules that combine SHPs equipped with an activating phosphonate moiety at the benzylic position with additional urea/thiourea fragments. The target compounds were synthesized by reaction of iso(thio)cyanates with C-arylphosphorylated phenols containing pendant 2,6-diaminopyridine and 1,3-diaminobenzene moieties. The SHP/urea hybrids display cytotoxic activity against a number of tumor lines. Mechanistic studies confirm the paradoxical nature of these substances which combine pronounced antioxidant properties in radical trapping assays with increased reactive oxygen species generation in tumor cells. Moreover, the most cytotoxic compounds inhibited the process of glycolysis in SH-SY5Y cells and caused pronounced dissipation of the mitochondrial membrane of isolated rat liver mitochondria. Molecular docking of the most active compounds identified the activator allosteric center of pyruvate kinase M2 as one of the possible targets. For the most promising compounds, 11b and 17b, this combination of properties results in the ability to induce apoptosis in HuTu 80 cells along the intrinsic mitochondrial pathway. Cyclic voltammetry studies reveal complex redox behavior which can be simplified by addition of a large excess of acid that can protect some of the oxidizable groups by protonations. Interestingly, the re-reduction behavior of the oxidized species shows considerable variations, indicating different degrees of reversibility. Such reversibility (or quasi-reversibility) suggests that the shift of the phenol-quinone equilibrium toward the original phenol at the lower pH may be associated with lower cytotoxicity.


Asunto(s)
Neuroblastoma , Fenoles , Humanos , Animales , Ratas , Fenoles/farmacología , Antioxidantes/farmacología , Fenol , Urea , Especies Reactivas de Oxígeno , Simulación del Acoplamiento Molecular , Apoptosis
16.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37569687

RESUMEN

A synthesis procedure and aggregation properties of a new homologous series of dicationic gemini surfactants with a dodecane spacer and two carbamate fragments (N,N'-dialkyl-N,N'-bis(2-(ethylcarbamoyloxy)ethyl)-N,N'-dimethyldodecan-1,6-diammonium dibromide, n-12-n(Et), where n = 10, 12, 14) were comprehensively described. The critical micelle concentrations of gemini surfactants were obtained using tensiometry, conductometry, spectrophotometry, and fluorimetry. The thermodynamic parameters of adsorption and micellization, i.e., maximum surface excess (Гmax), the surface area per surfactant molecule (Amin), degree of counterion binding (ß), and Gibbs free energy of micellization (∆Gmic), were calculated. Functional activity of the surfactants, including the solubilizing capacity toward Orange OT and indomethacin, incorporation into the lipid bilayer, minimum inhibitory concentration, and minimum bactericidal and fungicidal concentrations, was determined. Synthesized gemini surfactants were further used for the modification of liposomes dual-loaded with α-tocopherol and donepezil hydrochloride for intranasal treatment of Alzheimer's disease. The obtained liposomes have high stability (more than 5 months), a significant positive charge (approximately + 40 mV), and a high degree of encapsulation efficiency toward rhodamine B, α-tocopherol, and donepezil hydrochloride. Korsmeyer-Peppas, Higuchi, and first-order kinetic models were used to process the in vitro release curves of donepezil hydrochloride. Intranasal administration of liposomes loaded with α-tocopherol and donepezil hydrochloride for 21 days prevented memory impairment and decreased the number of Aß plaques by 37.6%, 40.5%, and 72.6% in the entorhinal cortex, DG, and CA1 areas of the hippocampus of the brain of transgenic mice with Alzheimer's disease model (APP/PS1) compared with untreated animals.

17.
Bioorg Chem ; 139: 106742, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37480816

RESUMEN

Tumor selectivity is yet a challenge in chemotherapy-based cancer treatment. A series of calixarenes derivatized at the lower rim with 3-phenyl-1H-pyrazole units with variable upper-rim substituent and conformations of macrocyclic core, alkyl chain length between heterocycle and core, as well as phenolic monomer (5-(4-tert-butylphenyloxy)methoxy-3-phenyl-1H-pyrazole) have been synthesized and characterized in a range of therapeutically relevant cellular models (M-HeLa, MCF7, A-549, PC3, Chang liver, and Wi38) from different target organs/systems. Specific cytotoxicity for M-HeLa cells has been observed in tert-butylcalix[4]arene pyrazoles in 1,3-alternate (compound 7b) and partial cone (compound 7c) conformations with low mutagenicity and haemotoxicity and in vivo toxicity in mice. Compounds 7b,c have induced mitochondrial pathway of apoptosis of M-HeLa cells through caspase-9 activation preceded by the cell cycle arrest at G0/G1 phase. A concomitant overexpression of DNA damage markers in pyrazole-treated M-HeLa cells suggests that calixarene pyrazoles target DNA, which was supported by the presence of interactions between calixarenes and ctDNA at the air-water interface.


Asunto(s)
Calixarenos , Neoplasias , Poríferos , Humanos , Animales , Ratones , Calixarenos/farmacología , Células HeLa , Pirazoles/farmacología , Neoplasias/tratamiento farmacológico
18.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373075

RESUMEN

Herein, we report the design and synthesis of novel 7-aza-coumarine-3-carboxamides via scaffold-hopping strategy and evaluation of their in vitro anticancer activity. Additionally, the improved non-catalytic synthesis of 7-azacoumarin-3-carboxylic acid is reported, which features water as the reaction medium and provides a convenient alternative to the known methods. The anticancer activity of the most potent 7-aza-coumarine-3-carboxamides against the HuTu 80 cell line is equal to that of reference Doxorubicin, while the selectivity towards the normal cell line is 9-14 fold higher.


Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología , Relación Estructura-Actividad , Doxorrubicina , Cumarinas/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
19.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175618

RESUMEN

Supramolecular self-assembly is a powerful tool for the development of polymolecular assemblies that can form the basis of useful nanomaterials. Given the increasing popularity of RNA therapy, the extension of this concept of self-assembly to RNA is limited. Herein, a simple method for the creation of nanosized particles through the supramolecular self-assembly of RNA with a three-dimensional macrocycle from the calixarene family was reported for the first time. This self-assembly into nanoparticles was realized using cooperative supramolecular interactions under mild conditions. The obtained nanoparticles are able to bind various hydrophobic (quercetin, oleic acid) and hydrophilic (doxorubicin) drugs, as a result of which their cytotoxic properties are enhanced. This work demonstrates that intermolecular interactions between flexible RNA and rigid calixarene is a promising route to bottom-up assembly of novel supramolecular soft matter, expanding the design possibilities of nanoscale drug carriers.


Asunto(s)
Calixarenos , Nanopartículas , Nanoestructuras , Portadores de Fármacos/química , ARN , Nanoestructuras/química
20.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37111256

RESUMEN

Combining two pharmacophores in a molecule can lead to useful synergistic effects. Herein, we show hybrid systems that combine sterically hindered phenols with dinitrobenzofuroxan fragments exhibit a broad range of biological activities. The modular assembly of such phenol/benzofuroxan hybrids allows variations in the phenol/benzofuroxan ratio. Interestingly, the antimicrobial activity only appears when at least two benzofuroxan moieties are introduced per phenol. The most potent of the synthesized compounds exhibit high cytotoxicity against human duodenal adenocarcinoma (HuTu 80), human breast adenocarcinoma (MCF-7), and human cervical carcinoma cell lines. This toxicity is associated with the induction of apoptosis via the internal mitochondrial pathway and an increase in ROS production. Encouragingly, the index of selectivity relative to healthy tissues exceeds that for the reference drugs Doxorubicin and Sorafenib. The biostability of the leading compounds in whole mice blood is sufficiently high for their future quantification in biological matrices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...